A Machine Learning Approach to Forecasting Remotely Sensed Vegetation Health
نویسندگان
چکیده
Drought threatens food and water security around the world, and this threat is likely to become more severe under climate change. High resolution predictive information can help farmers, water managers, and others to manage the effects of drought. We have created an open source tool to produce short-term forecasts of vegetation health at high spatial resolution, using data that are global in coverage. The tool automates downloading and processing Moderate Resolution Imaging Spectroradiometer (MODIS) datasets, and training gradient-boosted machine models on hundreds of millions of observations to predict future values of the Enhanced Vegetation Index. We compared the predictive power of different sets of variables (raw spectral MODIS data and Level-3 MODIS products) in two regions with distinct agro-ecological systems, climates, and cloud coverage: Sri Lanka and California. Our tool provides considerably greater predictive power on held-out datasets than simpler baseline models.
منابع مشابه
A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملSpatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization
The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...
متن کاملA model-based approach for mapping rangelands covers using Landsat TM image data
Empirical models are important tools for relating field-measured biophysical variables to remotely sensed data. Regression analysis has been a popular empirical method of linking these two types of data to estimate variables such as biomass, percent vegetation canopy cover, and bare soil. This study was conducted in a semi-arid rangeland ecosystem of Qazvin province, Iran. This paper presents t...
متن کاملCartography and Diachronic Study of the Naama sabkha (Southwestern Algeria) Remotely Sensed Vegetation Index and Soil Properties
The present study focuses on the past (1985) and current (2018) status of the Naama’s Sabkha, particularly its salinity, vegetation, and water status. The acquired results will be useful for the preservation of Sabkha biodiversity. The representative sampling allowed us to make 136 soil samples over two depths: topsoil (0-4 cm) and down soil (4-30 cm) layers. The salinity analyses revealed that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016